Towards Provenance for Cybersecurity in
Cloud-Native Production Infrastructure

1%t Paul R. B. Houssel
Institut Polytechnique de Paris
SAMOVAR, Télécom SudParis
91120 Palaiseau, France
Orange Innovation, France
paul.houssel @orange.com

Abstract—System provenance models the interactions between
system subjects and objects, enabling post-mortem and root-
cause analyses of cyberattacks. Despite numerous contributions
to provenance systems, there remains little consensus on the
reliability of existing telemetry collection methods. Linux Security
Module (LSM) interfaces present a promising alternative thanks
to their inherent stability and safety for production environments.
However, since LSM do not capture the full granularity of system
calls, it is unclear whether they can support the creation of sound
provenance graphs. In this work, we study the evolution of these
kernel interfaces and their coverage.

Index Terms—Provenance, Linux Security Module, eBPF

I. CONTEXT AND RESEARCH OBJECTIVES

System provenance captures relationships among subjects,
objects, and transformations, establishing causal links between
system events [1], [2]. By modeling system behavior as a
graph, provenance supports forensics and root cause analysis.
To construct these graphs, telemetry may be collected from
various levels in a Linux system. In user space, ptrace
enables system call monitoring but suffers from high overhead,
limited visibility, and has shown to be vulnerable to privilege
escalation attacks in the past [3], [4]. In contrast, kernel-
level monitoring tools such as ftrace [5] and auditd [6]
offer lower overhead, improved security, and full visibility.
However, these methods require kernel source modifications,
resulting in lengthy peer review and community approval.
Moreover, many production systems are hesitant to upgrade
kernel versions due to compatibility constraints. Collection
agents deployed as eBPF programs or kernel modules offer
a more flexible alternative as they allow loading programs in
the kernel, attaching to security and tracing interfaces.

Existing provenance systems leverage different kernel in-
terfaces, for example Clarion [7] integrates auditd and Net-
filter, while ConProv [8] combines kprobes, tracepoints, and
Linux Security Module (LSM) hooks while eAudit [9] and
SysFlow [10] rely solely on tracepoints.

Among available kernel instrumentation mechanisms, trace-
points and LSM hooks provide static interfaces designed for
tracing and security policy enforcement at predefined loca-
tions, while kprobes offer a dynamic attachment to any kernel
function. By probing telemetry in the kernel, all these solutions

2" Sylvie Laniepce
Orange Innovation, France
s.laniepce @orange.com

37 Olivier Levillain
Institut Polytechnique de Paris
SAMOVAR, Télécom SudParis
91120 Palaiseau, France
olivier.levillain @telecom-sudparis.eu

better align with modern production environments, where a
common kernel executes various cloud-native microservices.
These infrastructures, where each container runs within its
own cgroup, demand fine-grained targeted collection which
can be achieved by attaching LSM hooks directly to those
cgroups [11]. Nevertheless, challenges remain in managing
telemetry volume, ensuring utility, and mitigating overhead.
Thus, there is a need to reconsider the telemetry collection
approach. LSM hooks, traditionally employed by frameworks
such as SELinux [12] and AppArmor [13] intercept Access
Control (AC) operations. Each hook corresponds to a specific
event (e.g., file access or socket creation), enabling attached
LSMs, implemented as eBPF programs or kernel modules,
to enforce security policies and trace telemetry. With AC-
operation granularity, LSM hooks have shown to offer the sta-
bility essential for provenance systems. Indeed, kernel evolu-
tions might introduce new attack paths that could be exploited
in dynamic hooks if not correctly updated. Furthermore,
because LSM hooks integrate deeply into the kernel’s function
call chain, they provide the most raw telemetry, rendering
detection and audit processes agnostic to user-space appli-
cation semantics. It also allows LSM hooks, unlike kprobes
and tracepoints, to be resistant to Time-of-Check-to-Time-
of-Use (TOCTOU) race condition attacks [14]-[16], which
exploit delays between reading and verifying system call
arguments. Additionally, by covering solely LSM operations
rather than all system calls, this selective approach typically
results in lower log volume while still in theory covering all
AC-related events. Previous work, such as CamFlow [17] and
ProvBPF [18] leverage LSM hooks for provenance collection,
unfortunately without fully evaluating their coverage and sta-
bility.

II. RESEARCH PLAN

To assess the suitability of LSM hooks for production
provenance systems, this paper investigates two key research
questions: 1) Do LSM hooks provide sufficient system cov-
erage to construct sound provenance graphs?; 2) Compared
to system calls, do LSM hooks offer greater stability across
kernel versions? Preventing a provenance model built upon
them to be constantly revised. This preliminary work, will

identify the need for additional LSM operations if gaps are
identified, serving as a foundation to understand the validity of
using LSM for our future provenance collection. To validate it,
we will consider real-world attack scenarios, with a particular
focus on ransomware. Ransomware presents a compelling
case that production systems face and which generates high-
intensity system activity, resulting in a high volume of kernel-
level telemetry. Finally, we aim to generalize our findings to
other attack types, refining our approach by adding benign
noise and more diverse attacks.

III. PRELIMINARY RESULTS AND FUTURE WORK
A. System Call and LSM Interface Relationships

We propose a static analysis method to map system calls to
their related LSM hooks. Leveraging the flow graph generator
GNU cflow [19] and the code-navigation tool cscope [20],
our approach analyzes the Linux kernel source to construct
function call graphs linking system call macros to the LSM
hooks they trigger. Our method, without compilation prepro-
cessing, is agnostic to the compilation configurations. In sum,
we: 1) Parse include/linux/syscalls.h to identify all
system calls of the current kernel version; 2) Locate across all
C files the definition of these system calls defined as macros,
using cscope. E.g., open is defined in £s/open.c; 3) For
each identified source file, GNU cflow generates a function call
graph, defining as a directed graph, the function flow from
the system call definition macro; 4) Use Depth-First Search
(DFS) traversal to find all paths connecting a system call to
an LSM hook. If no relationship is found, we recursively
analyze the files referencing the functions located as leaves
in the generated graph, until reaching a recursion depth.

Our results map system calls to LSM hooks, correlating
each security operation with the system calls that triggers it.
In Linux 6.13, with a recursion depth of 5, we identify only
63.70% of the LSM hooks for which at least one related sys-
tem call is identified. 69.15% of the system calls were found
to lead to at least one LSM hook. Our manual review indicates
that our approach does not capture all existing relationships.
This limitation does not stem from the recursion depth, but
from the static analysis tool’s limitations in handling indirect
function calls. Future work will explore alternative tools, such
as the GCC plugin Kayrebt [21] to generate function activity
diagrams and a dynamic analysis approach with the Trinity
system call fuzzer [22].

B. System Call and LSM Interface stability

We assess the stability of LSM hooks and system calls
by analyzing the changes made to their Application Binary
Interface (ABI) across Linux kernel versions. We consider two
minor versions per major release since LSM introduction in
version 2.6, starting from 2.6.12. For each version, we extract
system calls from include/linux/syscalls.h and
LSM interfaces from include/linux/lsm_hooks.h
and include/linux/security.h for pre 4.12 versions.
We then track additions and removals of LSM hooks and
system call functions and their arguments.

TABLE I
EVOLUTION OF LSM AND SYSTEM CALL ABI, SHOWING THE NUMBER OF
ADDED (’+’), REMOVED (’-"), AND INITIAL (’=") INTERFACE FUNCTIONS
AND ARGUMENT MODIFICATIONS SINCE THE PREVIOUS RELEASE.

Linux Release LSM Argument System Argument
version date hooks changes calls changes
2.6.12 2005-06-17 =131 - =251 -
2.6.30 2009-06-09 +72/-22 19 +79/-0 8
3.1 2011-10-24 +17/-14 8 +17/-1 15
3.12 2013-11-03 +12/-4 12 +13/-0 16
4.1 2015-06-21 +7/-2 3 +9/-0 4
4.12 2017-07-02 +8/-3 19 +10/-0 5
5.1 2019-05-05 +23/-4 24 +37/-0 27
5.12 2021-04-25 +16/-2 26 +15/-1 13
6.1 2022-12-11 +10/-2 10 +8/-1 0
6.12 2024-11-17 +33/-8 20 +14/-1 7
6.13 2025-01-19 +6/-4 1 +4/-0 0

Table. I summarizes the evolution of LSM hooks and
system call ABI’s over time. Initially, there were 131 LSM
interfaces, and although the number has grown to 270 by
version 6.13, the evolution process involves frequent removals
as well as additions. The changes to LSM hooks functions can
be categorized as follows: 1) Introduction of new functions
to support emerging security operations. E.g., between 2.6.12
and 2.6.30, ptrace_traceme and ptrace_may_access
hooks were added following the introduction of the ptrace
system call; 2) Renaming for enhanced context, reflecting
changes in their visibility (the data they access to) even
though the covered AC operations semantics remain. E.g., in
version 6.13, the hook inode_getsecid was renamed to
inode_getlsmprop to better reflect the broader context
of data gathering across all registered LSMs; 3) Removal
of obsolete hooks when their corresponding system calls
are eliminated. Similarly, the arguments of these hooks are
frequently adjusted by either converting an argument to a con-
stant, renaming it, or adding additional arguments for clarity.
We observe that new system calls integrate with existing LSM
hooks (e.g., the file_open hook is now triggered by both
openat and openat?2). While argument adjustments are
common, the removal of system calls is relatively rare, and
limited to cases of renaming, type changes, or conversion to
constants. LSM hooks are not as stable as initially thought,
and their interface changes as much as those of system calls.

IV. CONCLUSION

Our study demonstrates that while LSM hooks capture
only key system calls, they inherently cover all AC-related
operations and adapt to evolving system-call interfaces. It still
remains unclear if they provide a stabler basis for provenance
models and cover all critical events. Future work shall focus
on analyzing the mapping between system calls and LSMs
to assess whether additional hooks are needed. A quantitative
evaluation of ABI changes is necessary to fully understand
their stability compared to those of system calls.

[1]

[2]

[8]

[9]

[10]

[11]

(12]

[13]
[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

REFERENCES

L. Carata, S. Akoush, N. Balakrishnan, T. Bytheway, R. Sohan,
M. Seltzer, and A. Hopper, “A primer on provenance,” Communications
of the ACM, vol. 57, no. 5, pp. 52-60, May 2014.

M. A. Inam, Y. Chen, A. Goyal, J. Liu, J. Mink, N. Michael,
S. Gaur, A. Bates, and W. U. Hassan, “SoK: History is a Vast Early
Warning System: Auditing the Provenance of System Intrusions,” in
2023 IEEE Symposium on Security and Privacy (SP). San Francisco,
CA, USA: IEEE, May 2023, pp. 2620-2638. [Online]. Available:
https://ieeexplore.ieee.org/document/10179405/

E. Connor, T. McDaniel, J. M. Smith, and M. Schuchard, “PKU Pitfalls:
Attacks on PKU-based Memory Isolation Systems,” in Proceedings of
the 29th USENIX Security Symposium (USENIX Security 20), Boston,
MA, USA, 2020, pp. 1409-1426.

“CVE-2019-13272,” Jul. 2019. [Online]. Available:
https://nvd.nist.gov/vuln/detail/CVE-2019-13272

“ftrace - Function Tracer — The Linux Kernel documentation.” [Online].
Available: https://www.kernel.org/doc/html/v6.14-rc6/trace/ftrace.html
“auditd(8) - Linux manual page.” [Online]. Available:
https://www.man7.org/linux/man-pages/man8/auditd.8.html

X. Chen and Y. Chen, “CLARION: Sound and Clear Provenance
Tracking for Microservice Deployments,” in Proceedings of the 30th
USENIX Security Symposium (USENIX Security 21), Virtual Event,
2021.

Q. Deng, Y. Zhang, Z. Xu, Q. Tan, and Y. Zhang, “ConProv: A
Container-Aware Provenance System for Attack Investigation,” in An-
nual Computer Security Applications Conference (ACSAC) 2025 Pro-
ceedings. Honolulu, Hawaii, USA: IEEE, 2024.

R. Sekar, H. Kimm, and R. Aich, “eAudit: A Fast, Scalable and
Deployable Audit Data Collection System,” in 2024 IEEE Symposium
on Security and Privacy (SP) Proceedings, May 2024, pp. 3571-3589,
iSSN: 2375-1207.

T. Taylor, F. Araujo, and X. Shu, “Towards an Open Format for Scalable
System Telemetry,” in 2020 IEEE International Conference on Big
Data (Big Data). Atlanta, GA, USA: IEEE, Dec. 2020, pp. 1031-1040.
[Online]. Available: https://ieeexplore.ieee.org/document/9378294/

S. Fomichev. (2022, Jun.) [patch bpf-next v11 03/11] bpf:
per-cgroup Ism flavor. Linux Kernel Mailing List. [On-
line]. Available: https://lore.kernel.org/all/20220628174314.1216643-
4-sdf@google.com/

S. Smalley, C. Vance, and W. Salamon, Implementing SELinux as a
Linux security module. NAI Labs Report, 2001.

“AppArmor.” [Online]. Available: https://apparmor.net/

R. N. M. Watson, “Exploiting concurrency vulnerabilities in system call
wrappers,” in Proceedings of the first USENIX workshop on Offensive
Technologies, ser. WOOT ’07. USA: USENIX Association, Aug. 2007,
pp. 1-8.

R. Guo and J. Zeng, “Trace Me If You can: BypassingLinux Syscall
Tracing,” DEF CON 30, Las Vegas, US, 2022.

——, “Phantom Attack: Evading System Call Monitoring,” DEF CON
29, Las Vegas, US, 2021.

T. Pasquier, X. Han, M. Goldstein, T. Moyer, D. Eyers, M. Seltzer, and
J. Bacon, “Practical whole-system provenance capture,” in Proceedings
of the 2017 Symposium on Cloud Computing. Santa Clara, California,
US: ACM, Sep. 2017, pp. 405-418.

S. Y. Lim, B. Stelea, X. Han, and T. Pasquier, “Secure Namespaced
Kernel Audit for Containers,” in Proceedings of the ACM Symposium
on Cloud Computing. Seattle, WA, USA: ACM, Nov. 2021, pp. 518-
532.

“Cflow - GNU Project - Free Software Foundation.” [Online]. Available:
https://www.gnu.org/software/cflow/

“Cscope Home Page.” [Online]. Available:
https://cscope.sourceforge.net/

L. Georget, F. Tronel, and V. V. T. Tong, “Kayrebt: An activity diagram
extraction and visualization toolset designed for the Linux codebase,”
in 2015 IEEE 3rd Working Conference on Software Visualization (VIS-
SOFT). Bremen, Germany: IEEE, Sep. 2015, pp. 170-174.

D. Jones, “Trinity: A Linux system call fuzzer.” [Online]. Available:
https://github.com/kernelslacker/trinity

